The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338148 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns. 4
 0, 0, 0, 3, 3, 0, 74, 10482, 303268, 3440700, 19842840, 65867760, 133580160, 168399000, 128898000, 54885600, 9979200, 0, 40927, 731157018, 729348051686, 151526009158620, 11418355290999750, 415756294427389020, 8643340000393019040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Chiral colorings come in pairs, each the reflection of the other. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is an octahedron (cube) with 12 edges. For n>1, the number of edges (ridges) is 2*n*(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,3,...,3,3} and {3,3,...,3,4} respectively, with n-2 3's in each case. The figures are mutually dual. The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1). LINKS K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180. FORMULA For n>1, A337413(n,k) = Sum_{j=1..2*n*(n-1)} T(n,j) * binomial(k,j). T(n,k) = A338146(n,k) - A338147(n,k) = (A338146(n,k) - A338149(n,k)) / 2 = A338147(n,k) - A338149(n,k). T(2,k) = A338144(2,k) = A325018(2,k) = A325010(2,k); T(3,k) = A338144(3,k). EXAMPLE Triangle begins with T(1,1):   0   0  0     3      3   0 74 10482 303268 3440700 19842840 65867760 133580160 168399000   ... For T(2,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. For T(2,4)=3, the chiral pairs are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB. MATHEMATICA m=1; (* dimension of color element, here an edge *) Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]]; FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]); PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]); pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)] array[n_, k_] := row[n] /. b -> k Join[{{0}}, Table[LinearSolve[Table[Binomial[i, j], {i, 2^(m+1)Binomial[n, m+1]}, {j, 2^(m+1)Binomial[n, m+1]}], Table[array[n, k], {k, 2^(m+1)Binomial[n, m+1]}]], {n, m+1, m+4}]] // Flatten CROSSREFS Cf. A338146 (oriented), A338147 (unoriented), A338149 (achiral), A337413 (k or fewer colors), A325010 (orthoplex vertices, orthotope facets). Cf. A327089 (simplex), A338144 (orthotope edges, orthoplex ridges). Sequence in context: A285863 A111843 A119537 * A338144 A031438 A096964 Adjacent sequences:  A338145 A338146 A338147 * A338149 A338150 A338151 KEYWORD nonn,tabf AUTHOR Robert A. Russell, Oct 12 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 11:57 EST 2022. Contains 350455 sequences. (Running on oeis4.)