login
A338150
a(n) is the least j >= 2 such that (n+1)^A338136(n) mod n^j is a perfect power > 1.
3
4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2
OFFSET
2,1
FORMULA
(n+1)^A338136(n) mod n^A338150(n) = A338151(n).
EXAMPLE
a(2) = 4 because A338136(2) = 6 and 3^6 mod 2^4 = 3^2.
a(13) = 2 because A338136(13) = 2 and 14^2 mod 13^2 = 3^3.
MAPLE
g:= proc(n) local k, x, j, F;
for k from 2 to n-2 do
x:= (n+1)^k;
for j from 2 to floor(k*log[n](n+1)) do
F:= ifactors(x mod (n^j))[2];
if igcd(op(map(t -> t[2], F))) > 1 then return j fi
od od
end proc:
g(2):= 4: g(3):= 2:
map(g, [$2..40]);
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 12 2020
EXTENSIONS
More terms from Jinyuan Wang, Oct 17 2020
STATUS
approved