login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338151
a(n) = (n+1)^A338136(n) mod n^A338150(n).
3
9, 4, 9, 16, 25, 169, 25, 64, 81, 100, 25, 27, 729, 121, 49, 256, 289, 324, 81, 64, 243, 484, 49, 576, 5929, 676, 169, 784, 121, 125, 225, 100, 1089, 841, 7921, 1000, 343, 196, 81, 1600, 169, 216, 441, 361, 2025, 2116, 289, 2304, 2401, 256, 625, 2704, 2809, 441
OFFSET
2,1
COMMENTS
a(n) is a perfect power, and a(n) == 1 + n*A338136(n) (mod n^2).
LINKS
FORMULA
a(n) = (n+1)^A338136(n) mod n^A338150(n).
EXAMPLE
a(2) = 3^A338136(2) mod 2^A338150(2) = 3^6 mod 2^4 = 3^2 = 9.
a(13) = 14^A338136(13) mod 13^A338150(13) = 14^2 mod 13^2 = 3^3 = 27.
MAPLE
g:= proc(n) local k, x, j, F;
for k from 2 to n-2 do
x:= (n+1)^k;
for j from 2 to floor(k*log[n](n+1)) do
F:= ifactors(x mod (n^j))[2];
if igcd(op(map(t -> t[2], F))) > 1 then return x mod (n^j) fi
od od
end proc:
g(2):= 9: g(3):= 4:
map(g, [$2..40]);
CROSSREFS
Sequence in context: A355563 A332500 A253203 * A255642 A088701 A153698
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 12 2020
STATUS
approved