login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)^A338136(n) mod n^A338150(n).
3

%I #8 Oct 17 2020 10:53:17

%S 9,4,9,16,25,169,25,64,81,100,25,27,729,121,49,256,289,324,81,64,243,

%T 484,49,576,5929,676,169,784,121,125,225,100,1089,841,7921,1000,343,

%U 196,81,1600,169,216,441,361,2025,2116,289,2304,2401,256,625,2704,2809,441

%N a(n) = (n+1)^A338136(n) mod n^A338150(n).

%C a(n) is a perfect power, and a(n) == 1 + n*A338136(n) (mod n^2).

%H Jinyuan Wang, <a href="/A338151/b338151.txt">Table of n, a(n) for n = 2..1000</a>

%F a(n) = (n+1)^A338136(n) mod n^A338150(n).

%e a(2) = 3^A338136(2) mod 2^A338150(2) = 3^6 mod 2^4 = 3^2 = 9.

%e a(13) = 14^A338136(13) mod 13^A338150(13) = 14^2 mod 13^2 = 3^3 = 27.

%p g:= proc(n) local k, x, j, F;

%p for k from 2 to n-2 do

%p x:= (n+1)^k;

%p for j from 2 to floor(k*log[n](n+1)) do

%p F:= ifactors(x mod (n^j))[2];

%p if igcd(op(map(t -> t[2], F))) > 1 then return x mod (n^j) fi

%p od od

%p end proc:

%p g(2):= 9: g(3):= 4:

%p map(g, [$2..40]);

%Y Cf. A338136, A338150.

%K nonn

%O 2,1

%A _J. M. Bergot_ and _Robert Israel_, Oct 12 2020