login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255642
a(n) = n*((n mod 3)*(n mod 5)-((n mod 3)+(n mod 5))).
2
0, -1, 0, -9, -4, -10, -6, -7, 8, -36, -10, -11, -24, -13, 28, 0, -16, 0, -54, -19, -40, -21, -22, 23, -96, -25, -26, -54, -28, 58, 0, -31, 0, -99, -34, -70, -36, -37, 38, -156, -40, -41, -84, -43, 88, 0, -46, 0, -144, -49, -100, -51, -52, 53, -216, -55, -56, -114, -58, 118, 0, -61, 0, -189, -64, -130, -66, -67, 68, -276, -70, -71, -144, -73, 148, 0
OFFSET
0,4
COMMENTS
a(n) = 0 for n == {0,2} mod 15.
LINKS
FORMULA
Empirical g.f. x*(2*x^20 -6*x^19 +6*x^17 -3*x^16 -14*x^15 +38*x^14 -46*x^13 +26*x^12 -16*x^11 -10*x^10 +48*x^9 -31*x^8 -4*x^7 -x^6 +8*x^5 -11*x^4 +14*x^3 -10*x^2 +2*x -1) / ((x -1)^2*(x^2 +x +1)^2*(x^8 -x^7 +x^5 -x^4 +x^3 -x +1)^2). - Colin Barker, Mar 01 2015
MATHEMATICA
Table[x*(Mod[x, 3]*Mod[x, 5]-(Mod[x, 3]+Mod[x, 5])), {x, 0, 100}]
PROG
(PARI) vector(100, n, n*((n%3)*(n%5)-((n%3)+(n%5)))) \\ Colin Barker, Mar 01 2015
CROSSREFS
Sequence in context: A332500 A253203 A338151 * A088701 A153698 A168203
KEYWORD
sign,easy
AUTHOR
Zak Seidov, Mar 01 2015
STATUS
approved