login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*((n mod 3)*(n mod 5)-((n mod 3)+(n mod 5))).
2

%I #10 Mar 01 2015 16:50:34

%S 0,-1,0,-9,-4,-10,-6,-7,8,-36,-10,-11,-24,-13,28,0,-16,0,-54,-19,-40,

%T -21,-22,23,-96,-25,-26,-54,-28,58,0,-31,0,-99,-34,-70,-36,-37,38,

%U -156,-40,-41,-84,-43,88,0,-46,0,-144,-49,-100,-51,-52,53,-216,-55,-56,-114,-58,118,0,-61,0,-189,-64,-130,-66,-67,68,-276,-70,-71,-144,-73,148,0

%N a(n) = n*((n mod 3)*(n mod 5)-((n mod 3)+(n mod 5))).

%C a(n) = 0 for n == {0,2} mod 15.

%H Colin Barker, <a href="/A255642/b255642.txt">Table of n, a(n) for n = 0..1000</a>

%F Empirical g.f. x*(2*x^20 -6*x^19 +6*x^17 -3*x^16 -14*x^15 +38*x^14 -46*x^13 +26*x^12 -16*x^11 -10*x^10 +48*x^9 -31*x^8 -4*x^7 -x^6 +8*x^5 -11*x^4 +14*x^3 -10*x^2 +2*x -1) / ((x -1)^2*(x^2 +x +1)^2*(x^8 -x^7 +x^5 -x^4 +x^3 -x +1)^2). - _Colin Barker_, Mar 01 2015

%t Table[x*(Mod[x,3]*Mod[x,5]-(Mod[x,3]+Mod[x,5])),{x,0,100}]

%o (PARI) vector(100, n, n*((n%3)*(n%5)-((n%3)+(n%5)))) \\ _Colin Barker_, Mar 01 2015

%K sign,easy

%O 0,4

%A _Zak Seidov_, Mar 01 2015