login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338149
Triangle read by rows: T(n,k) is the number of achiral colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns.
4
1, 1, 4, 3, 0, 1, 68, 1200, 7268, 20025, 27750, 18900, 5040, 0, 0, 0, 0, 1, 8198, 9055962, 1467050480, 74035775370, 1679679306420, 20864180531565, 159341117375160, 804216787965360, 2808560520334800, 6981656802951600
OFFSET
1,3
COMMENTS
An achiral coloring is identical to its reflection. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is an octahedron (cube) with 12 edges. For n>1, the number of edges (ridges) is 2*n*(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,3,...,3,3} and {3,3,...,3,4} respectively, with n-2 3's in each case. The figures are mutually dual.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
FORMULA
For n>1, A337414(n,k) = Sum_{j=1..2*n*(n-1)} T(n,j) * binomial(k,j).
T(n,k) = 2*A338147(n,k) - A338146(n,k) = A338146(n,k) - 2*A338148(n,k) = A338147(n,k) - A338148(n,k).
T(2,k) = A338145(2,k) = A325019(2,k) = A325011(2,k); T(3,k) = A338145(3,k).
EXAMPLE
Triangle begins with T(1,1):
1
1 4 3 0
1 68 1200 7268 20025 27750 18900 5040 0 0 0 0
1 8198 9055962 1467050480 74035775370 1679679306420 ...
...
For T(2,2)=4, the achiral colorings are AAAB, AABB, ABAB, and ABBB. For T(2,3)=3, the 3 achiral colorings are ABAC, ABCB, and ACBC.
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 0, (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b; row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Join[{{1}}, Table[LinearSolve[Table[Binomial[i, j], {i, 2^(m+1)Binomial[n, m+1]}, {j, 2^(m+1)Binomial[n, m+1]}], Table[array[n, k], {k, 2^(m+1)Binomial[n, m+1]}]], {n, m+1, m+4}]] // Flatten
CROSSREFS
Cf. A338146 (oriented), A338147 (unoriented), A338148 (chiral), A337414 (k or fewer colors), A325011 (orthoplex vertices, orthotope facets).
Cf. A327090 (simplex), A338145 (orthotope edges, orthoplex ridges).
Sequence in context: A270708 A198261 A284056 * A338145 A296002 A227423
KEYWORD
nonn,tabf
AUTHOR
Robert A. Russell, Oct 12 2020
STATUS
approved