login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338147
Triangle read by rows: T(n,k) is the number of unoriented colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns.
4
1, 1, 4, 6, 3, 1, 142, 11682, 310536, 3460725, 19870590, 65886660, 133585200, 168399000, 128898000, 54885600, 9979200, 1, 49125, 740212980, 730815102166, 151600044933990, 11420034970306170, 415777158607920585
OFFSET
1,3
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is an octahedron (cube) with 12 edges. For n>1, the number of edges (ridges) is 2*n*(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,3,...,3,3} and {3,3,...,3,4} respectively, with n-2 3's in each case. The figures are mutually dual.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
FORMULA
For n>1, A337412(n,k) = Sum_{j=1..2*n*(n-1)} T(n,j) * binomial(k,j).
T(n,k) = A338146(n,k) - A338148(n,k) = (A338146(n,k) + A338149(n,k)) / 2 = A338148(n,k) + A338149(n,k).
T(2,k) = A338143(2,k) = A325017(2,k) = A325009(2,k); T(3,k) = A338143(3,k).
EXAMPLE
Triangle begins with T(1,1):
1
1 4 6 3
1 142 11682 310536 3460725 19870590 65886660 133585200 168399000
...
For T(2,3)=6, the 3 achiral colorings are ABAC, ABCB, and ACBC. The three chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b; row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
array[n_, k_] := row[n] /. b -> k
Join[{{1}}, Table[LinearSolve[Table[Binomial[i, j], {i, 2^(m+1)Binomial[n, m+1]}, {j, 2^(m+1)Binomial[n, m+1]}], Table[array[n, k], {k, 2^(m+1)Binomial[n, m+1]}]], {n, m+1, m+4}]] // Flatten
CROSSREFS
Cf. A338146 (oriented), A338148 (chiral), A338149 (achiral), A337412 (k or fewer colors), A325009 (orthoplex vertices, orthotope facets).
Cf. A327088 (simplex), A338143 (orthotope edges, orthoplex ridges).
Sequence in context: A197731 A325009 A325017 * A338143 A016492 A213080
KEYWORD
nonn,tabf
AUTHOR
Robert A. Russell, Oct 12 2020
STATUS
approved