login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053383
Triangle T(n,k) giving denominator of coefficient of x^(n-k) in Bernoulli polynomial B(n, x), n >= 0, 0 <= k <= n.
24
1, 1, 2, 1, 1, 6, 1, 2, 2, 1, 1, 1, 1, 1, 30, 1, 2, 3, 1, 6, 1, 1, 1, 2, 1, 2, 1, 42, 1, 2, 2, 1, 6, 1, 6, 1, 1, 1, 3, 1, 3, 1, 3, 1, 30, 1, 2, 1, 1, 5, 1, 1, 1, 10, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 66, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2730, 1, 2, 1, 1, 6, 1, 7, 1, 10, 1, 3, 1, 210, 1
OFFSET
0,3
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14a].
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 53.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
D. H. Lehmer, A new approach to Bernoulli polynomials, The American mathematical monthly 95.10 (1988): 905-911.
EXAMPLE
The polynomials B(0,x), B(1,x), B(2,x), ... are 1; x - 1/2; x^2 - x + 1/6; x^3 - (3/2)*x^2 + (1/2)*x; x^4 - 2*x^3 + x^2 - 1/30; x^5 - (5/2)*x^4 + (5/3)*x^3 - (1/6)*x; x^6 - 3*x^5 + (5/2)*x^4 - (1/2)*x^2 + 1/42; ...
Triangle A053382/A053383 begins:
1;
1, -1/2;
1, -1, 1/6;
1, -3/2, 1/2, 0;
1, -2, 1, 0, -1/30;
1, -5/2, 5/3, 0, -1/6, 0;
1, -3, 5/2, 0, -1/2, 0, 1/42;
...
Triangle A196838/A196839 begins (this is the reflected version):
1;
-1/2, 1;
1/6, -1, 1;
0, 1/2, -3/2, 1;
-1/30, 0, 1, -2, 1;
0, -1/6, 0, 5/3, -5/2, 1;
1/42, 0, -1/2, 0, 5/2, -3, 1;
...
MAPLE
with(ListTools): with(PolynomialTools):
CoeffList := p -> Reverse(CoefficientList(p, x)):
Trow := n -> denom(CoeffList(bernoulli(n, x))):
Flatten([seq(Trow(n), n = 0..13)]); # Peter Luschny, Apr 10 2021
MATHEMATICA
t[n_, k_] := Denominator[ Coefficient[ BernoulliB[n, x], x, n - k]]; Flatten[ Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jan 15 2013 *)
PROG
(PARI) v=[]; for(n=0, 6, v=concat(v, apply(denominator, Vec(bernpol(n))))); v \\ Charles R Greathouse IV, Jun 08 2012
CROSSREFS
Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.
Cf. A144845 (lcm of row n).
Sequence in context: A096162 A333144 A306297 * A181538 A322128 A125731
KEYWORD
nonn,easy,nice,frac,tabl
AUTHOR
N. J. A. Sloane, Jan 06 2000
EXTENSIONS
More terms from James A. Sellers, Jan 10 2000
STATUS
approved