login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) giving denominator of coefficient of x^(n-k) in Bernoulli polynomial B(n, x), n >= 0, 0 <= k <= n.
24

%I #42 Apr 10 2021 12:13:17

%S 1,1,2,1,1,6,1,2,2,1,1,1,1,1,30,1,2,3,1,6,1,1,1,2,1,2,1,42,1,2,2,1,6,

%T 1,6,1,1,1,3,1,3,1,3,1,30,1,2,1,1,5,1,1,1,10,1,1,1,2,1,1,1,1,1,2,1,66,

%U 1,2,6,1,1,1,1,1,2,1,6,1,1,1,1,1,2,1,1,1,2,1,1,1,2730,1,2,1,1,6,1,7,1,10,1,3,1,210,1

%N Triangle T(n,k) giving denominator of coefficient of x^(n-k) in Bernoulli polynomial B(n, x), n >= 0, 0 <= k <= n.

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14a].

%D M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 53.

%D H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

%H T. D. Noe, <a href="/A053383/b053383.txt">Rows n = 0..50 of triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/2322383">A new approach to Bernoulli polynomials</a>, The American mathematical monthly 95.10 (1988): 905-911.

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers</a>.

%e The polynomials B(0,x), B(1,x), B(2,x), ... are 1; x - 1/2; x^2 - x + 1/6; x^3 - (3/2)*x^2 + (1/2)*x; x^4 - 2*x^3 + x^2 - 1/30; x^5 - (5/2)*x^4 + (5/3)*x^3 - (1/6)*x; x^6 - 3*x^5 + (5/2)*x^4 - (1/2)*x^2 + 1/42; ...

%e Triangle A053382/A053383 begins:

%e 1;

%e 1, -1/2;

%e 1, -1, 1/6;

%e 1, -3/2, 1/2, 0;

%e 1, -2, 1, 0, -1/30;

%e 1, -5/2, 5/3, 0, -1/6, 0;

%e 1, -3, 5/2, 0, -1/2, 0, 1/42;

%e ...

%e Triangle A196838/A196839 begins (this is the reflected version):

%e 1;

%e -1/2, 1;

%e 1/6, -1, 1;

%e 0, 1/2, -3/2, 1;

%e -1/30, 0, 1, -2, 1;

%e 0, -1/6, 0, 5/3, -5/2, 1;

%e 1/42, 0, -1/2, 0, 5/2, -3, 1;

%e ...

%p with(ListTools): with(PolynomialTools):

%p CoeffList := p -> Reverse(CoefficientList(p, x)):

%p Trow := n -> denom(CoeffList(bernoulli(n, x))):

%p Flatten([seq(Trow(n), n = 0..13)]); # _Peter Luschny_, Apr 10 2021

%t t[n_, k_] := Denominator[ Coefficient[ BernoulliB[n, x], x, n - k]]; Flatten[ Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* _Jean-François Alcover_, Jan 15 2013 *)

%o (PARI) v=[];for(n=0,6,v=concat(v,apply(denominator,Vec(bernpol(n)))));v \\ _Charles R Greathouse IV_, Jun 08 2012

%Y Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

%Y Cf. A144845 (lcm of row n).

%K nonn,easy,nice,frac,tabl

%O 0,3

%A _N. J. A. Sloane_, Jan 06 2000

%E More terms from _James A. Sellers_, Jan 10 2000