login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048998
Triangle giving coefficients of (n+1)!*B_n(x), where B_n(x) is a Bernoulli polynomial. Rising powers of x.
10
1, -1, 2, 1, -6, 6, 0, 12, -36, 24, -4, 0, 120, -240, 120, 0, -120, 0, 1200, -1800, 720, 120, 0, -2520, 0, 12600, -15120, 5040, 0, 6720, 0, -47040, 0, 141120, -141120, 40320, -12096, 0, 241920, 0, -846720, 0, 1693440, -1451520, 362880
OFFSET
0,3
COMMENTS
See A074909 for generators for the Bernoulli polynomials and connections to the beheaded Pascal triangle and reciprocals of the integers. - Tom Copeland, Nov 17 2014
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 9.62.
FORMULA
t*exp(x*t)/(exp(t)-1) = Sum_{n >= 0} B_n(x)*t^n/n!.
a(n,m) = [x^m]((n+1)!*B_n(x)), n>=0, m=0,...,n. - Wolfdieter Lang, Jun 21 2011
EXAMPLE
B_0(x)=1; B_1(x)=x-1/2; B_2(x)=x^2-x+1/6; B_3(x)=x^3-3*x^2/2+x/2; B_4(x)=x^4-2*x^3+x^2-1/30; ...
Triangle starts:
1;
-1, 2;
1, -6, 6;
0, 12, -36, 24;
...
MAPLE
A048998 := proc(n, k) coeftayl(bernoulli(n, x), x=0, k) ; (n+1)!*% ; end proc:
seq(seq(A048998(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Jun 27 2011
# second program:
b := proc(n, m, x) option remember; if n = 0 then 1/(m + 1) else
(n + 1) * ((m + 1)*b(n - 1, m + 1, x) - (m + 1 - x)*b(n - 1, m, x)) fi end:
row := n -> seq(coeff(b(n, 0, x), x, k), k = 0..n):
seq(row(n), n = 0..8); # Peter Luschny, Jun 20 2023
MATHEMATICA
Flatten[Table[CoefficientList[(n + 1)! BernoulliB[n, x], x], {n, 0, 10}]] (* T. D. Noe, Jun 21 2011 *)
CROSSREFS
Sequence in context: A376980 A374625 A218853 * A213615 A049019 A133314
KEYWORD
sign,easy,nice,tabl
EXTENSIONS
Added 'Rising powers of x' in name - Wolfdieter Lang, Jun 21 2011
STATUS
approved