login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157817
Numerator of Bernoulli(n, 1/4).
4
1, -1, -1, 3, 7, -25, -31, 427, 127, -12465, -2555, 555731, 1414477, -35135945, -57337, 2990414715, 118518239, -329655706465, -5749691557, 45692713833379, 91546277357, -7777794952988025, -1792042792463, 1595024111042171723, 1982765468311237, -387863354088927172625
OFFSET
0,4
COMMENTS
From Wolfdieter Lang, Apr 28 2017: (Start)
The rationals r(n) = Sum_{k=0..n} ((-1)^k / (k+1))*A285061(n, k)*k! = Sum_{k=0..n} ((-1)^k/(k+1))*A225473(n, k) define generalized Bernoulli numbers, named B[4,1](n), in terms of the generalized Stirling2 numbers S2[4,1]. The numerators of r(n) are a(n) and the denominators A141459(n). r(n) = B[4,1](n) = 4^n*B(n, 1/4) with the Bernoulli polynomials B(n, x) = Bernoulli(n, x) from A196838/A196839 or A053382/A053383.
The generalized Bernoulli numbers B[4,3](n) = Sum_{k=0..n} ((-1)^k/(k+1))* A225467(n, k)*k! = Sum_{k=0..n} ((-1)^k/(k+1))*A225473(n, k) satisfy
B[4,3](n) = 4^n*B(n, 3/4) = (-1)^n*B[4,1](n). They have numerators (-1)^n*a(n) and also denominators A141459(n). (End)
LINKS
FORMULA
From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(Bernoulli(n, 1/4)) with denominator A157818(n) (see the name).
a(n) = numerator(4^n*Bernoulli(n, 1/4)) with denominator A141459(n) = A157818(n)/4^n.
a(n)*(-1)^n = numerator(4^n*Bernoulli(n, 3/4)) with denominator A141459(n).
(End)
MATHEMATICA
Table[Numerator[BernoulliB[n, 1/4]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)
CROSSREFS
For denominators see A157818 and A141459.
Sequence in context: A041563 A042657 A031875 * A118718 A349753 A058781
KEYWORD
sign,easy,frac
AUTHOR
N. J. A. Sloane, Nov 08 2009
STATUS
approved