login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157814
a(n) = 27225*n^2 - 2*n.
3
27223, 108896, 245019, 435592, 680615, 980088, 1334011, 1742384, 2205207, 2722480, 3294203, 3920376, 4600999, 5336072, 6125595, 6969568, 7867991, 8820864, 9828187, 10889960, 12006183, 13176856, 14401979, 15681552, 17015575
OFFSET
1,1
COMMENTS
The identity (1482401250*n^2-108900*n+1)^2-(27225*n^2-2*n)*(8984250*n-330)^2=1 can be written as A157816(n)^2-a(n)*A157815(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(27223+27227*x)/(1-x)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {27223, 108896, 245019}, 40]
PROG
(Magma) I:=[27223, 108896, 245019]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]];
(PARI) a(n) = 27225*n^2 - 2*n.
CROSSREFS
Sequence in context: A224466 A127411 A268358 * A216943 A250852 A157820
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 07 2009
STATUS
approved