login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268358
Number of n-digit numbers in base ten having at least five different digits with no leading zeros allowed.
1
27216, 544320, 7212240, 81648000, 862774416, 8839212480, 89320326480, 897169996800, 8988342579216, 89952351128640, 899806333018320, 8999216089718400, 89996836576073616, 899987262844420800, 8999948800775111760, 89999794450846828800, 899999175545734649616
OFFSET
5,1
LINKS
Ronald Becerra et al., How many numbers of 10 digits have at least 5 different digits?, Mathematics Stack Exchange, Feb 02 2016
FORMULA
a(n) = Sum_{q=5..10} binomial(10,q)*Stirling2(n, q)*q! - Sum_{q=5..10} binomial(9,q-1)*Stirling2(n-1, q-1)*(q-1)! - Sum_{q=5..10} binomial(9,q-1)*Stirling2(n-1, q)*q!.
From Colin Barker, Feb 03 2016: (Start)
a(n) = 9*(560 - 945*2^n - 105*2^(1+2*n) + 80*3^(2+n) + 10^n)/10.
a(n) = 20*a(n-1) - 135*a(n-2) + 400*a(n-3) - 524*a(n-4) + 240*a(n-5) for n > 9.
G.f.: 27216*x^5 / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-10*x)).
(End)
These three formulas are correct because the closed form is equivalent to that given in the Becerra et al. link, namely, 9*10^(n-1) - 189*4^n + 648*3^n - 1701*2^(n-1) + 504. - Colin Barker, Feb 11 2016
MAPLE
Q :=
proc(n)
add(binomial(10, q)*stirling2(n, q)*q!, q=5..10)
- add(binomial(9, q-1)*stirling2(n-1, q-1)*(q-1)!, q=5..10)
- add(binomial(9, q-1)*stirling2(n-1, q)*q!, q=5..10);
end;
MATHEMATICA
Table[Sum[Binomial[10, i] StirlingS2[n, i] i!, {i, 5, 10}] - Sum[Binomial[9, i - 1] StirlingS2[n - 1, i - 1] (i - 1)!, {i, 5, 10}] - Sum[Binomial[9, i - 1] StirlingS2[n - 1, i] i!, {i, 5, 10}], {n, 5, 20}] (* Michael De Vlieger, Feb 03 2016 *)
CoefficientList[Series[27216 x^5/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 10 x)), {x, 0, 20}], x] (* Michael De Vlieger, Feb 03 2016 *)
LinearRecurrence[{20, -135, 400, -524, 240}, {27216, 544320, 7212240, 81648000, 862774416}, 20] (* Harvey P. Dale, Aug 02 2018 *)
PROG
(PARI) a(n) = sum(q=5, 10, binomial(10, q)*stirling(n, q, 2)*q!) - sum(q=5, 10, binomial(9, q-1)*stirling(n-1, q-1, 2)*(q-1)!) - sum(q=5, 10, binomial(9, q-1)*stirling(n-1, q, 2)*q!) \\ Colin Barker, Feb 03 2016
(PARI) Vec(27216*x^5/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-10*x)) + O(x^100)) \\ Colin Barker, Feb 11 2016
CROSSREFS
Sequence in context: A228562 A224466 A127411 * A157814 A216943 A250852
KEYWORD
nonn,base,easy
AUTHOR
Marko Riedel, Feb 02 2016
STATUS
approved