login
A309012
Number of ordered pairs (i,j) with 0 < i < j < prime(n)/2 such that (i^16 mod prime(n)) > (j^16 mod prime(n)).
1
0, 0, 0, 0, 3, 3, 0, 16, 21, 43, 30, 62, 77, 99, 129, 146, 203, 187, 228, 245, 252, 345, 372, 382, 402, 558, 570, 631, 663, 756, 901, 1114, 961, 1325, 1398, 1253, 1571, 1470, 1601, 1795, 2024, 1988, 2349, 2014, 2184, 2200, 2728, 3054, 3084, 3718, 3386, 3224, 3018, 3861, 3866, 4258, 4361, 4418, 5110, 4724
OFFSET
1,5
COMMENTS
Conjecture : Let p be an odd prime, and let N be the number of ordered pairs (i,j) with 0 < i < j < p/2 and (i^16 mod p) > (j^16 mod p). When p == 1 (mod 16), we have 2 | N. Also, N == |{0<k<p/4: Leg(k,p) = 1}| (mod 2) if p == 9 (mod 16), where Leg(k,p) denotes the Legendre symbol (k/p). When p == 3 or 5 (mod 8), we have N == floor[(p-3)/8] (mod 2).
LINKS
Zhi-Wei Sun, Quadratic residues and related permutations and identities, arXiv:1809.07766 [math.NT], 2018-2019.
EXAMPLE
a(5) = 3 with prime(5) = 11, and (2^16 mod 11) = 9 greater than (3^16 mod 11) = 3, (4^16 mod 11) = 4 and (5^16 mod 11)) = 5.
MATHEMATICA
r[p_]:=r[p]=Sum[Boole[PowerMod[j, 16, p]>PowerMod[k, 16, p]], {k, 2, p/2}, {j, 1, k-1}];
Print[Table[r[Prime[n]], {n, 1, 60}]]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 06 2019
STATUS
approved