login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151634
Number of permutations of 3 indistinguishable copies of 1..n with exactly 4 adjacent element pairs in decreasing order.
2
0, 0, 405, 128124, 12750255, 789300477, 38464072830, 1641724670475, 64856779908606, 2445752640197970, 89642032274378115, 3228334377697738350, 115003717118946936945, 4069184219056622926539, 143377786266629066071740, 5038841894823365860640997, 176801555321207696717476200
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (126, -6741, 203286, -3863391, 48979386, -427502471, 2613017466, -11265590916, 34232982136, -72719412480, 106245417600, -103853184000, 64584960000, -23040000000, 3584000000).
FORMULA
a(n) = 35^n - (3*n + 1)*20^n + binomial(3*n+1, 2)*10^n - binomial(3*n+1, 3)*4^n + binomial(3*n+1, 4). - Andrew Howroyd, May 07 2020
a(n) = Sum_{j=0..6} (-1)^j*binomial(3*n+1, 6-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1, 3])^n, {j, 0, k+2}];
Table[T[n, 4], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
PROG
(PARI) a(n) = {35^n - (3*n + 1)*20^n + binomial(3*n+1, 2)*10^n - binomial(3*n+1, 3)*4^n + binomial(3*n+1, 4)} \\ Andrew Howroyd, May 07 2020
(Sage)
@CachedFunction
def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1, 3))^n for j in (0..k+2) )
[T(n, 4) for n in (1..30)] # G. C. Greubel, Mar 26 2022
CROSSREFS
Column k=4 of A174266.
Sequence in context: A185839 A285924 A285860 * A368367 A132362 A371900
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, May 07 2020
STATUS
approved