login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174266
Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(3*n+1,i) * binomial(k+3-i,3)^n, 0 <= k <= 3*(n-1).
16
1, 1, 9, 9, 1, 1, 54, 405, 760, 405, 54, 1, 1, 243, 6750, 49682, 128124, 128124, 49682, 6750, 243, 1, 1, 1008, 83736, 1722320, 12750255, 40241088, 58571184, 40241088, 12750255, 1722320, 83736, 1008, 1, 1, 4077, 922347, 45699447, 789300477, 5904797049, 21475242671, 40396577931, 40396577931, 21475242671, 5904797049, 789300477, 45699447, 922347, 4077, 1
OFFSET
1,3
COMMENTS
From Yahia Kahloune, Jan 30 2014: (Start)
In general, let b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,3,n).
With these coefficients we can calculate: Sum_{i=1..n} binomial(i+e-1,e)^p = Sum_{i=0..e*(p-1)} b(i,e,p)*binomial(n+e+i,e*p+1).
For example, A086020(n) = Sum_{i=1..n} binomial(2+i, 3)^2 = T(2,0)*binomial(n+3, 7) + T(2,1)*binomial(n+4,7) + T(2,2)*binomial(n+5,7) + T(2,3)*binomial(n+6,7) = (1/5040)*(20*n^7 + 210*n^6 + 854*n^5 + 1680*n^4 + 1610*n^3 + 630*n^2 + 36*n). (End)
T(n,k) is the number of permutations of 3 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 06 2020
LINKS
FORMULA
T(n,k) = [x^k] (1-x)^(3*n+1)*(Sum_{k>=0} (k*(k+1)*(k-1)/2)^n*x^k)/(3^n*x^2).
T(n,k) = T(n, 3*n-k).
From Yahia Kahloune, Jan 30 2014: (Start)
Sum_{i=1..n} binomial(2+i,3)^p = Sum_{i=0..3*p-3} T(p,i)*binomial(n+3+i,3*p+1).
binomial(n,3)^p = Sum_{i=0..3*p-3} T(p,i)*binomial(n+i,3*p). (End)
From Sergii Voloshyn, Dec 18 2024: (Start)
Let E be the operator (x^2)D*(1/x)*D*(x^2)*D, where D denotes the derivative operator d/dx. Then (1/6^n)* E^n(x^2/(1 - x)^4) = (row n generating polynomial)/(1 - x)^(3*n+4) = Sum_{i=0..k} (-1)^i * binomial(3*n+1,i) * binomial(k+3-i,3)^n.
For example, when n = 3 we have 1/216*E^3(x^2/(1 - x)^4) = x^2 (1 + 243x + 6750x^2 + 49682x^3 + 128124x^4 + 128124x^5 + 49682x^6 + 6750x^7 + 243x^8 + x^9)/(1 - x)^13. (End)
EXAMPLE
Triangle begins:
1;
1, 9, 9, 1;
1, 54, 405, 760, 405, 54, 1;
1, 243, 6750, 49682, 128124, 128124, 49682, ... ;
1, 1008, 83736, 1722320, 12750255, 40241088, 58571184, ... ;
1, 4077, 922347, 45699447, 789300477, ... ;
1, 16362, 9639783, 1063783164, 38464072830, ... ;
1, 65511, 98361900, 23119658500, 1641724670475, ... ;
1, 262116, 992660346, 484099087156, 64856779908606, ... ;
...
The T(2,1) = 9 permutations of 111222 with 1 descent are: 112221, 112212, 112122, 122211, 122112, 121122, 222111, 221112, 211122. - Andrew Howroyd, May 07 2020
MATHEMATICA
(* First program *)
p[n_, x_]:= p[n, x]= (1-x)^(3*n+1)*Sum[(Binomial[k+1, 3])^n*x^k, {k, 0, Infinity}]/x^2;
Table[CoefficientList[p[x, n], x], {n, 10}]//Flatten (* corrected by G. C. Greubel, Mar 26 2022 *)
(* Second program *)
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j+1)*Binomial[3*n+1, k-j+1]*(j*(j^2-1)/2)^n, {j, 0, k+1}]/(3^n)];
Table[T[n, k], {n, 10}, {k, 3*n-2}]//Flatten (* G. C. Greubel, Mar 26 2022 *)
PROG
(PARI) T(n, k)={sum(i=0, k, (-1)^i*binomial(3*n+1, i)*binomial(k+3-i, 3)^n)} \\ Andrew Howroyd, May 06 2020
(Sage)
@CachedFunction
def T(n, k): return (1/3^n)*sum( (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(j^2-1)/2)^n for j in (0..k+1) )
flatten([[T(n, k) for k in (1..3*n-2)] for n in (1..10)]) # G. C. Greubel, Mar 26 2022
CROSSREFS
Row sums are A014606.
Similar triangles for e=1..6: A173018 (or A008292), A154283, this sequence, A236463, A237202, A237252.
Sequence in context: A197350 A197364 A338217 * A351722 A334425 A280554
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Mar 14 2010
EXTENSIONS
Edited by Andrew Howroyd, May 06 2020
STATUS
approved