login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151638
Number of permutations of 3 indistinguishable copies of 1..n with exactly 8 adjacent element pairs in decreasing order.
2
0, 0, 0, 243, 12750255, 40396577931, 41106807537048, 22745757394235250, 8699569720553953791, 2617057246555282014495, 668634213456480163469985, 152325974081288304581227794, 31960987230978975148286275260, 6315174416665212479526100114476
OFFSET
1,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (1287, -778635, 295087143, -78757785579, 15778863379215, -2469906458492215, 310433833720029195, -31951771730535427065, 2733179350270223477785, -196528389527687790031593, 11985141042154490418785781, -624319353245531324368589785, 27937742235090714610172185269, -1078918430758501220128475037837, 36090971895951595049632092872905, -1048807183921997729421431750802210, 26538626394588804244411344362289180, -585742712867636473889820333895325960, 11290946875479197719981055898705842640, -190242978590642131810466071594577045856, 2803028334513544005305538345639354644032, -36116842200479350538673233701931574526080, 406839176866275971760705035377939565311488, -4003890839024013630299437079281080555536384, 34391681475642311442636394036792617457582080, -257483345852835701281401936856484593110220800, 1677354698611307266147622604716869996838912000, -9487912103085101966952941170538539017830400000, 46483514384733904314355601898864606157209600000, -196665838715803401733927598517905248747520000000, 716085486868940810143492111107549922590720000000, -2234951903777824995459451037159105809612800000000, 5951411268951166700745578197262375321600000000000, -13448380314552698433108601331259958886400000000000, 25625033743682596345813503616255996723200000000000, -40863903217821737298129553070185512960000000000000, 54045744994528210207993057131469209600000000000000, -58623407588610300485897706188832768000000000000000, 51413975240876145030443038385635328000000000000000, -35776951355628605313894780040642560000000000000000, 19242984319988159850768781384089600000000000000000, -7696862042758387149551324626944000000000000000000, 2151367384135060324918650470400000000000000000000, -374436012994639297259765760000000000000000000000, 30509601058822461258203136000000000000000000000).
FORMULA
a(n) = Sum_{j=0..10} (-1)^j*binomial(3*n+1, 10-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1, 3])^n, {j, 0, k+2}];
Table[T[n, 8], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1, 3))^n for j in (0..k+2) )
[T(n, 8) for n in (1..30)] # G. C. Greubel, Mar 26 2022
(PARI) a(n) = sum(j=0, 10, (-1)^j*binomial(3*n+1, 10-j)*(binomial(j+1, 3))^n); \\ Michel Marcus, Mar 27 2022
CROSSREFS
Column k=8 of A174266.
Sequence in context: A017429 A017561 A164657 * A352033 A248137 A243774
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved