login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151641
Number of permutations of 4 indistinguishable copies of 1..n with exactly 3 adjacent element pairs in decreasing order.
2
0, 16, 8464, 724320, 37229920, 1558185200, 59416090096, 2167506244544, 77394535148480, 2734912695301840, 96159966699204560, 3372863224609356576, 118169571125488257824, 4137881135327148408240, 144857367811462402307760, 5070515828676757812456320
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (84,-2651,41784,-364146,1838880,-5445950,9357000,-9128125,4687500,-984375).
FORMULA
a(n) = 35^n - (4*n + 1)*15^n + binomial(4*n+1, 2)*5^n - binomial(4*n+1, 3). - Andrew Howroyd, May 07 2020
From G. C. Greubel, Sep 08 2022: (Start)
a(n) = Sum_{j=0..3} (-1)^j*binomial(4*n+1, j)*binomial(7-j, 4)^n.
G.f.: 16*x^2*(1 +445*x +3485*x^2 -115215*x^3 +200675*x^4 +798375*x^5 -1890625*x^6 -703125*x^7)/( Product_{j=0..3} (1 - binomial(j+4,4)*x)^(4-j) ).
E.g.f.: exp(35*x) -(1+60*x)*exp(15*x) +50*x*(1+4*x)*exp(5*x) -(2/3)*x*(15 +48*x +16*x^2)*exp(x). (End)
MATHEMATICA
With[{B=Binomial}, Table[Sum[(-1)^j*B[4*n+1, j]*B[7-j, 4]^n, {j, 0, 3}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
PROG
(PARI) a(n) = {35^n - (4*n + 1)*15^n + binomial(4*n+1, 2)*5^n - binomial(4*n+1, 3)} \\ Andrew Howroyd, May 07 2020
(Magma) [(&+[(-1)^j*Binomial(4*n+1, j)*Binomial(7-j, 4)^n: j in [0..3]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
(SageMath)
def A151641(n): return sum((-1)^j*binomial(4*n+1, j)*binomial(7-j, 4)^n for j in (0..3))
[A151641(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022
CROSSREFS
Column k=3 of A236463.
Sequence in context: A069986 A366361 A265177 * A265240 A221137 A006448
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, May 07 2020
STATUS
approved