login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151642
Number of permutations of 4 indistinguishable copies of 1..n with exactly 4 adjacent element pairs in decreasing order.
2
0, 1, 13840, 4961755, 733059110, 75073622025, 6438673851876, 503519287150295, 37463016470769170, 2712124797724710645, 193396524783642727120, 13675857973300537321251, 962624331855762939745950, 67586399804656292725004385, 4738724382451462432861849980
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (210, -17985, 836310, -23627805, 429628026, -5189886205, 42366601950, -235447933875, 889918833750, -2267731621875, 3835990781250, -4208760859375, 2865761718750, -1098193359375, 180878906250).
FORMULA
a(n) = 70^n - (4*n + 1)*35^n + binomial(4*n+1, 2)*15^n - binomial(4*n+1, 3)*5^n + binomial(4*n+1, 4). - Andrew Howroyd, May 07 2020
From G. C. Greubel, Sep 09 2022: (Start)
a(n) = Sum_{j=0..4} (-1)^j*binomial(4*n+1, j)*binomial(8-j, 4)^n.
G.f.: x^2*(1 +13630*x +2073340*x^2 -60833350*x^3 -1182529995*x^4 +34295189100*x^5 -173276304000*x^6 -651083647500*x^7 +5378182646875*x^8 -9980105906250*x^9 -2825648437500*x^10 +19397519531250*x^11 +3165380859375*x^12)/( Product_{j=0..4} (1 - binomial(j+4,4)*x)^(5-j) ).
E.g.f.: exp(70*x) -(1+140*x)*exp(35*x) +150*x*(1+12*x)*exp(15*x) -(50/3)*x*(3 +48*x +80*x^2)*exp(5*x) +(1/3)*x*(15 +174*x +176*x^2 +32*x^3)*exp(x). (End)
MATHEMATICA
Table[Sum[(-1)^j*Binomial[4*n+1, j]*Binomial[8-j, 4]^n, {j, 0, 4}], {n, 30}] (* G. C. Greubel, Sep 09 2022 *)
PROG
(PARI) a(n) = {70^n - (4*n + 1)*35^n + binomial(4*n+1, 2)*15^n - binomial(4*n+1, 3)*5^n + binomial(4*n+1, 4)} \\ Andrew Howroyd, May 07 2020
(Magma) [(&+[(-1)^j*Binomial(4*n+1, j)*Binomial(8-j, 4)^n: j in [0..4]]): n in [1..30]]; // G. C. Greubel, Sep 09 2022
(SageMath)
def A151642(n): return sum((-1)^j*binomial(4*n+1, j)*binomial(8-j, 4)^n for j in (0..4))
[A151642(n) for n in (1..30)] # G. C. Greubel, Sep 09 2022
CROSSREFS
Column k=4 of A236463.
Sequence in context: A013912 A179582 A325886 * A235004 A263976 A189989
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, May 07 2020
STATUS
approved