login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151645
Number of permutations of 4 indistinguishable copies of 1..n with exactly 7 adjacent element pairs in decreasing order.
2
0, 0, 112, 15018688, 69830127680, 99825129369600, 79985306860607376, 46314409921814756480, 22045769335091544766944, 9274231983519733250418880, 3600979296578512256763795120, 1326029824370661243342378614592, 471290654822091236131899199410048
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1716, -1336335, 629496840, -201662851530, 46822832504112, -8198705689543922, 1112168992680480840, -119141036496502877115, 10222470418101608725380, -710028695676774672446661, 40247505166008930895508256, -1873377747222689750364984480, 71937847093856988824912606400, -2286774193421516436467863123500, 60320306153033851397466880890000, -1322308197142100207034150164034375, 24106927359036759704772726680437500, -365500263926394882030626778788515625, 4605433354261294678893837507628125000, -48161866919161309147628101483394531250, 417169217807133892391665295808281250000, -2984883489620059230375322457959863281250, 17581782760938948426247013769884765625000, -84895915778539297273671354596768798828125, 334334731338183313104706151801440429687500, -1067327299326747481004612649706512451171875, 2742187962577531073301464459260253906250000, -5621703251054691311256555851797485351562500, 9102454366374887952005021014892578125000000, -11493168657532067651650712133178710937500000, 11128534281634369331848951098632812500000000, -8070567814684173335537005554199218750000000, 4229549688642245394265986328125000000000000, -1509576063065432132950057983398437500000000, 327876672867164207503417968750000000000000, -32668871390750056907043457031250000000000).
FORMULA
From G. C. Greubel, Sep 12 2022: (Start)
a(n) = Sum_{j=0..7} (-1)^j*binomial(4*n+1, j)*binomial(11-j, 4)^n.
G.f., e.g.f., and recurrence are in the file "Generating functions and recurrence". (End)
MATHEMATICA
Table[Sum[(-1)^j*Binomial[4*n+1, j]*Binomial[11-j, 4]^n, {j, 0, 7}], {n, 30}] (* G. C. Greubel, Sep 12 2022 *)
PROG
(Magma) [(&+[(-1)^j*Binomial(4*n+1, j)*Binomial(11-j, 4)^n: j in [0..7]]): n in [1..30]]; // G. C. Greubel, Sep 12 2022
(SageMath)
def A151645(n): return sum((-1)^j*binomial(4*n+1, j)*binomial(11-j, 4)^n for j in (0..7))
[A151645(n) for n in (1..30)] # G. C. Greubel, Sep 12 2022
CROSSREFS
Column k=7 of A236463.
Sequence in context: A180039 A261949 A159432 * A115486 A157885 A204377
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved