login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236463 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(4*n+1,i) * binomial(k+4-i,4)^n, 0 <= k <= 4*(n-1). 13
1, 1, 16, 36, 16, 1, 1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1, 1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1, 1, 3104, 693960, 37229920, 733059110, 6501577152, 29066972368, 69830127680, 93200908410, 69830127680 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,4,n).

Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.

In particular:

  binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p).

  Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).

T(n,k) is the number of permutations of 4 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 08 2020

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..780

FORMULA

Sum_{i=1..n} binomial(3+i,4)^p = Sum{k=0..4*(p-1)} T(p,k) * binomial(n+4+k, 4*p+1).

binomial(n,4)^p = Sum_{k=0..4*(p-1)} T(p,k) * binomial(n+k, 4*p).

EXAMPLE

T(n,0) = 1;

T(n,1) = 5^n - (4*n+1);

T(n,2) = 15^n - (4*n+1)*5^n + C(4*n+1,2);

T(n,3) = 35^n - (4*n+1)*15^n + C(4*n+1,2)*5^n - C(4*n+1,3);

T(n,4) = 70^n - (4*n+1)*35^n + C(4*n+1,2)*15^n - C(4*n+1,3)*5^n + C(4*n+1,4).

Triangle T(n,k) begins:

1,

1, 16, 36, 16, 1;

1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1;

1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1;

1, 3104, 693960, 37229920, 733059110, 6501577152, 29066972368, 69830127680, 93200908410, 69830127680, 29066972368, 6501577152, 733059110, 37229920, 693960, 3104, 1;

1, 15600, 11000300, 1558185200, 75073622025, 1585757994496, 16938467955200, 99825129369600, 342907451401150, 710228619472800, 903546399077256, 710228619472800, 342907451401150, 99825129369600, 16938467955200, 1585757994496, 75073622025, 1558185200, 11000300, 15600, 1;

  ...

Example:

Sum_{i=1..n} C(3+i,4)^3 = C(n+4,13) + 112*C(n+5,13) + 1828*C(n+6,13) + 8464*C(n+7,13) + 13840*C(n+8,13) + 8464*C(n+9,13) + 1828*C(n+10,13) + 112*C(n+11,13) + C(+12,13).

C(n,4)^3 = C(n,12) + 112*C(n+1,12) + 1828*C(n+2,12) + 8464*C(n+3,12) + 13840*C(n+4,12) + 8464*C(n+5,12) + 1828*C(n+6,12) + 112*C(n+7,12) + C(n+8,12).

MATHEMATICA

b[k_, 4, p_] := Sum[(-1)^i*Binomial[4*p+1, i]*Binomial[k-i, 4]^p /. k -> 4+i, {i, 0, k-4}]; row[p_] := Table[b[k, 4, p], {k, 4, 4*p}]; Table[row[p], {p, 1, 6}] // Flatten (* Jean-Fran├žois Alcover, Feb 05 2014 *)

PROG

T(n, k)={sum(i=0, k, (-1)^i*binomial(4*n+1, i)*binomial(k+4-i, 4)^n)} \\ Andrew Howroyd, May 08 2020

CROSSREFS

Columns k=2..8 are A151640, A151641, A151642, A151643, A151644, A151645, A151646.

Row sums are A014608.

Similar triangles for e=1..6: A173018 (or A008292), A154283, A174266, this sequence, A237202, A237252.

Sum_{i=1..n} binomial(3+i,4)^p for p=2..3 gives: A086023, A086024.

Cf. A087127, A087107, A087108, A087109, A087110, A087111, A181544.

Sequence in context: A337024 A219316 A317818 * A070588 A250432 A183196

Adjacent sequences:  A236460 A236461 A236462 * A236464 A236465 A236466

KEYWORD

nonn,tabf

AUTHOR

Yahia Kahloune, Feb 01 2014

EXTENSIONS

a(36) corrected by Vincenzo Librandi, Feb 14 2014

Edited by Andrew Howroyd, May 08 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 14:33 EDT 2021. Contains 343177 sequences. (Running on oeis4.)