OFFSET
1,3
COMMENTS
In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,5,n).
Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.
In particular:
binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p).
Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).
T(n,k) is the number of permutations of 5 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 08 2020
LINKS
G. C. Greubel, Table of n, a(n) for the first 25 rows, flattened
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 12.
FORMULA
Sum_{i=1..n} binomial(4+i,5)^p = Sum{k=0..5*(p-1)} T(p,k) * binomial(n+5+k, 5*p+1).
binomial(n,5)^p = Sum_{k=0..5*(p-1)} T(p,k) * binomial(n+k, 5*p).
EXAMPLE
T(n,0) = 1;
T(n,1) = 6^n - (5*n+1);
T(n,2) = 21^n - (5*n+1)*6^n + C(5*n+1,2);
T(n,3) = 56^n - (5*n+1)*21^n + C(5*n+1,2)*6^n - C(5*n+1,3) ;
T(n,4) = 126^n - (5*n+1)*56^n + C(5*n+1,2)*21^n - C(5*n+1,3)*6^n + C(5*n+1,4).
Triangle T(n,k) begins:
1;
1, 25, 100, 100, 25, 1;
1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1;
1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 125, 1;
1, 7750, 3882250, 447069750, 18746073375, 359033166276, 3575306548500, 20052364456500, 66640122159000, 135424590593500, 171219515211316, 135424590593500, 66640122159000, 20052364456500, 3575306548500, 359033166276, 18746073375, 447069750, 3882250, 7750, 1;
...
Example:
Sum_{i=1..n} C(4+i,5)^3 = C(n+5,16) + 200*C(n+6,16) + 5925*(n+7,16) + 52800*C(n+8,16) + 182700*C(n+9,16) + 273504*C(n+10,16) + 182700*C(n+11,16) + 52800*C(n+12,16) + 5925*C(n+13,16) + 200*C(n+14,16) + C(n+15,16).
C(n,5)^3 = C(n,15) + 200*C(n+1,15) + 5925*C(n+2,15) + 52800*C(n+3,15) + 182700*C(n+4,15) + 273504*C(n+5,15) + 182700*C(n+6,15) + 52800*C(n+7,15) + 5925*C(n+8,15) + 200*C(n+9,15) + C(n+10,15).
MATHEMATICA
b[k_, 5, p_] := Sum[(-1)^i*Binomial[5*p+1, i]*Binomial[k-i, 5]^p /. k -> 5+i, {i, 0, k-5}]; row[p_] := Table[b[k, 5, p], {k, 5, 5*p}]; Table[row[p], {p, 1, 5}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
PROG
(PARI) T(n, k)={sum(i=0, k, (-1)^i*binomial(5*n+1, i)*binomial(k+5-i, 5)^n)} \\ Andrew Howroyd, May 08 2020
CROSSREFS
KEYWORD
nonn,tabf,changed
AUTHOR
Yahia Kahloune, Feb 05 2014
EXTENSIONS
Edited by Andrew Howroyd, May 08 2020
STATUS
approved