login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237201
Smallest integer m such that the n consecutive numbers m, m+1, ..., m+n-1 have n prime factors each, counted with multiplicity; a(n) = 0 if no such number exists.
1
2, 9, 170, 4023, 632148, 4843161124, 1981162639374
OFFSET
1,1
MATHEMATICA
Table[First@Select[Range[10^6], Union[PrimeOmega[(#+Range[n]-1)]]==={n}&, 1], {n, 5}] (* Wouter Meeussen, Feb 09 2014 *)
With[{po=PrimeOmega[Range[633000]]}, Table[SequencePosition[po, PadRight[{}, n, n], 1][[1, 1]], {n, 5}]] (* Requires Mathematica version 10 or later *) (* The program generates the first 5 terms of the sequence. *) (* Harvey P. Dale, Jun 15 2021 *)
PROG
(Python)
import sympy
from sympy import isprime
from sympy import factorint
def PrimeFact(x):
n = 9930000
lst = []
while n < 10**10:
if not isprime(n):
count = 0
for i in range(n, n+x):
if sum(factorint(i).values()) == x:
count += 1
else:
n += 1
break
if count == x:
return n
else:
n += 1
(PARI) for(n=1, 5, for(k=2^n-1, oo, my(found=1); for(j=1, n, if(bigomega(k+j)!=n, found=0; break)); if(found, print1(k+1, ", "); break))) \\ Hugo Pfoertner, Oct 21 2020
CROSSREFS
Cf. A001222.
Sequence in context: A336213 A038843 A367526 * A053294 A199695 A349691
KEYWORD
nonn,hard,more
AUTHOR
Derek Orr, Feb 04 2014
EXTENSIONS
a(6) from Giovanni Resta, Feb 09 2014
a(7) from Giovanni Resta, Feb 10 2014
STATUS
approved