login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest integer m such that the n consecutive numbers m, m+1, ..., m+n-1 have n prime factors each, counted with multiplicity; a(n) = 0 if no such number exists.
1

%I #33 Jul 04 2024 20:18:14

%S 2,9,170,4023,632148,4843161124,1981162639374

%N Smallest integer m such that the n consecutive numbers m, m+1, ..., m+n-1 have n prime factors each, counted with multiplicity; a(n) = 0 if no such number exists.

%t Table[First@Select[Range[10^6],Union[PrimeOmega[(#+Range[n]-1)]]==={n}&,1],{n,5}] (* _Wouter Meeussen_, Feb 09 2014 *)

%t With[{po=PrimeOmega[Range[633000]]},Table[SequencePosition[po,PadRight[{},n,n],1][[1,1]],{n,5}]] (* Requires Mathematica version 10 or later *) (* The program generates the first 5 terms of the sequence. *) (* _Harvey P. Dale_, Jun 15 2021 *)

%o (Python)

%o import sympy

%o from sympy import isprime

%o from sympy import factorint

%o def PrimeFact(x):

%o n = 9930000

%o lst = []

%o while n < 10**10:

%o if not isprime(n):

%o count = 0

%o for i in range(n, n+x):

%o if sum(factorint(i).values()) == x:

%o count += 1

%o else:

%o n += 1

%o break

%o if count == x:

%o return n

%o else:

%o n += 1

%o (PARI) for(n=1, 5, for(k=2^n-1, oo, my(found=1); for(j=1, n, if(bigomega(k+j)!=n, found=0; break)); if(found, print1(k+1,", "); break))) \\ _Hugo Pfoertner_, Oct 21 2020

%Y Cf. A001222.

%K nonn,hard,more

%O 1,1

%A _Derek Orr_, Feb 04 2014

%E a(6) from _Giovanni Resta_, Feb 09 2014

%E a(7) from _Giovanni Resta_, Feb 10 2014