login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236464
Primes p with prime(p) + 2 and prime(p) + 6 both prime.
8
3, 5, 7, 13, 43, 89, 313, 613, 643, 743, 1171, 1279, 1627, 1823, 1867, 1999, 2311, 2393, 2683, 2753, 2789, 3571, 4441, 4561, 5039, 5231, 5647, 5953, 6067, 6317, 6899, 8039, 8087, 8753, 8923, 9337, 9787, 9931, 10259, 10667
OFFSET
1,1
COMMENTS
According to the conjecture in A236472, this sequence contains infinitely many terms, i.e., there are infinitely many prime triples of the form {prime(p), prime(p) + 2, prime(p) + 6} with p prime.
See A236462 for a similar sequence.
EXAMPLE
a(1) = 3 since 3, prime(3) + 2 = 7 and prime(3) + 6 = 11 are all prime, but prime(2) + 6 = 9 is composite.
MATHEMATICA
p[n_]:=p[n]=PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6]
n=0; Do[If[p[Prime[m]], n=n+1; Print[n, " ", Prime[m]]], {m, 1, 10000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 26 2014
STATUS
approved