login
A163080
Primes p such that p$ - 1 is also prime. Here '$' denotes the swinging factorial function (A056040).
3
3, 5, 7, 13, 41, 47, 83, 137, 151, 229, 317, 389, 1063, 2371, 6101, 7873, 13007, 19603
OFFSET
1,1
COMMENTS
a(n) are the primes in A163078.
EXAMPLE
3 is prime and 3$ - 1 = 5 is prime, so 3 is in the sequence.
MAPLE
a := proc(n) select(isprime, select(k -> isprime(A056040(k)-1), [$0..n])) end:
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; Select[Prime /@ Range[200], PrimeQ[sf[#] - 1] &] (* Jean-François Alcover, Jun 28 2013 *)
PROG
(PARI) is(k) = isprime(k) && ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Peter Luschny, Jul 21 2009
EXTENSIONS
a(14)-a(18) from Jinyuan Wang, Mar 22 2020
STATUS
approved