|
|
A163079
|
|
Primes p such that p$ + 1 is also prime. Here '$' denotes the swinging factorial function (A056040).
|
|
4
|
|
|
2, 3, 5, 31, 67, 139, 631, 9743, 16253, 17977, 27901, 37589
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) are the primes in A163077.
|
|
LINKS
|
Table of n, a(n) for n=1..12.
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Peter Luschny, Swinging Primes.
|
|
EXAMPLE
|
5 is prime and 5$ + 1 = 30 + 1 = 31 is prime, so 5 is in the sequence.
|
|
MAPLE
|
a := proc(n) select(isprime, select(k -> isprime(A056040(k)+1), [$0..n])) end:
|
|
MATHEMATICA
|
f[n_] := 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]; p = 2; lst = {}; While[p < 38000, a = f@p + 1; If[ PrimeQ@a, AppendTo[ lst, p]; Print@p]; p = NextPrime@p]; lst (* Robert G. Wilson v, Aug 08 2010 *)
|
|
PROG
|
(PARI) is(k) = isprime(k) && ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020
|
|
CROSSREFS
|
Cf. A002981, A062363, A093804, A163077.
Cf. A056040. - Robert G. Wilson v, Aug 09 2010
Sequence in context: A265807 A106308 A036797 * A109845 A241722 A276043
Adjacent sequences: A163076 A163077 A163078 * A163080 A163081 A163082
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Peter Luschny, Jul 21 2009
|
|
EXTENSIONS
|
a(8)-a(12) from Robert G. Wilson v, Aug 08 2010
|
|
STATUS
|
approved
|
|
|
|