login
A163076
Primes of the form k$ - 1. Here '$' denotes the swinging factorial function (A056040).
4
5, 19, 29, 139, 251, 12011, 48619, 51479, 155117519, 81676217699, 1378465288199, 5651707681619, 386971244197199, 1580132580471899, 30067266499541039, 6637553085023755473070799, 35257120210449712895193719, 399608854866744452032002440111
OFFSET
1,1
LINKS
Peter Luschny, Swinging Primes.
EXAMPLE
Since 4$ = 6 the prime 5 is listed.
MAPLE
a := proc(n) select(isprime, map(x -> A056040(x)-1, [$1..n])); sort(%) end:
MATHEMATICA
Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
Cf. A055490, A056040, A163078 (arguments k), A163074, A163075.
Sequence in context: A045457 A165557 A138242 * A122729 A347531 A356716
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 21 2009
EXTENSIONS
More terms from Jinyuan Wang, Mar 22 2020
STATUS
approved