login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163073
a(n) = ((5+sqrt(5))*(4+sqrt(5))^n + (5-sqrt(5))*(4-sqrt(5))^n)/10.
4
1, 5, 29, 177, 1097, 6829, 42565, 265401, 1654993, 10320533, 64359341, 401348865, 2502838169, 15607867837, 97331722837, 606967236489, 3785088940705, 23604071924261, 147196597046333, 917927985203793, 5724261314120681, 35696882675723725, 222608186950462309, 1388199786170737497
OFFSET
0,2
COMMENTS
Binomial transform of A082761. Fourth binomial transform of A074872.
FORMULA
a(n) = 8*a(n-1)-11*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1-3*x)/(1-8*x+11*x^2).
E.g.f.: exp(4*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Oct 25 2023
MATHEMATICA
LinearRecurrence[{8, -11}, {1, 5}, 30] (* Harvey P. Dale, Dec 11 2017 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-5); S:=[ ((5+r)*(4+r)^n+(5-r)*(4-r)^n)/10: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 24 2009
(PARI) x='x+O('x^30); Vec((1-3*x)/(1-8*x+11*x^2)) \\ G. C. Greubel, Jan 08 2018
CROSSREFS
Cf. A082761, A074872 (1,1,5,5,25,25,...).
Sequence in context: A327557 A163611 A160906 * A190802 A139174 A290117
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 24 2009
STATUS
approved