login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160906
Row sums of A159841.
1
1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
MAPLE
A160906 := proc(n) add( A159841(n, k), k=0..n) ; end:
seq(A160906(n), n=0..20) ;
MATHEMATICA
Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
PROG
(Sage)
a = lambda n: binomial(3*n+1, n)*hypergeometric([1, -n], [2*n+2], -1)
[simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
(PARI) a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
CROSSREFS
Sequence in context: A083066 A327557 A163611 * A163073 A190802 A139174
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, May 29 2009
STATUS
approved