The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226751 G.f.: 1 / (1 + 6*x*G(x) - 7*x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. 1
 1, 1, 9, 48, 289, 1761, 10932, 68664, 435201, 2777763, 17829489, 114968052, 744178716, 4832624044, 31469746632, 205422018288, 1343734578561, 8806130111847, 57805893969531, 380013533789928, 2501507255441049, 16486378106441697, 108773240389894056 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{k=0..n} C(2*k, n-k) * C(3*n-2*k, k). a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(2*n-2*k, k). a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(n-2*k, k). a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(-2*k, k). G.f.: 1/(1 - x*G(x) - 7*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. a(n) ~ 3^(3*n+3/2)/(5*sqrt(Pi*n)*2^(2*n+1)). - Vaclav Kotesovec, Jun 17 2013 Conjecture: 18*n*(2*n-1)*(55*n-76)*a(n) +(-11605*n^3+28521*n^2-20870*n+4536)*a(n-1) -24*(55*n-21)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016 EXAMPLE G.f.: A(x) = 1 + x + 9*x^2 + 48*x^3 + 289*x^4 + 1761*x^5 + 10932*x^6 +... A related series is G(x) = 1 + x*G(x)^3, where G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +... such that A(x) = 1/(1 + 6*x*G(x) - 7*x*G(x)^2). MATHEMATICA Table[Sum[Binomial[n+2*k, n-k]*Binomial[2*n-2*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 17 2013 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*n-2*k, k))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(3*n-2*k, k))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^3+x*O(x^n)); polcoeff(1/(1+6*x*G-7*x*G^2), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^3+x*O(x^n)); polcoeff(1/(1-x*G-7*x^2*G^4), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A183160, A147855, A001764. Sequence in context: A181959 A171011 A264273 * A073584 A007037 A179280 Adjacent sequences: A226748 A226749 A226750 * A226752 A226753 A226754 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 03:48 EDT 2024. Contains 372921 sequences. (Running on oeis4.)