The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226748 Number of partitions of n into Platonic numbers, cf. A053012. 5
1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 14, 14, 20, 20, 26, 27, 37, 37, 46, 47, 62, 63, 77, 80, 101, 103, 125, 130, 160, 164, 194, 203, 245, 253, 296, 311, 368, 381, 440, 463, 540, 562, 642, 677, 780, 814, 922, 973, 1107, 1157, 1302, 1375, 1552, 1626 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
EXAMPLE
First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, ...
a(10) = #{10, 8+1+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+6x1, 10x1} = 7;
a(11) = #{10+1, 8+1+1+1, 6+4+1, 6+5x1, 4+4+1+1+1, 4+7x1, 11x1} = 7;
a(12) = #{12, 10+1+1, 8+4, 8+1+1+1+1, 6+6, 6+4+1+1, 6+6x1, 4+4+4, 4+4+1+1+1+1, 4+8x1, 12x1} = 11;
a(13) = #{12+1, 10+1+1+1, 8+4+1, 8+5x1, 6+6+1, 6+4+1+1+1, 6+7x1, 4+4+4+1, 4+4+5x1, 4+9x1, 13x1} = 11;
a(14) = #{12+1+1, 10+4, 10+1+1+1+1, 8+6, 8+4+1+1, 8+6x1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+8x1, 4+4+4+1+1, 4+4+6x1, 4+10x1, 14x1} = 14;
a(15) = #{12+1+1+1, 10+4+1, 10+5x1, 8+6+1, 8+4+1+1+1, 8+7x1, 6+6+1+1+1, 6+4+4+1, 6+4+5x1, 6+9x1, 4+4+4+1+1+1, 4+4+7x1, 4+11x1, 15x1} = 14;
a(16) = #{12+4, 12+1+1+1+1, 10+6, 10+4+1+1, 10+6x1, 8+8, 8+6+1+1, 8+4+4, 8+4+1+1+1+1, 8+8x1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+6x1, 6+10x1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+8x1, 4+12x1, 16x1} = 20.
PROG
(Haskell)
a226748 = p a053012_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
CROSSREFS
Sequence in context: A177716 A109763 A321523 * A119620 A240870 A265771
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 17 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 17:27 EDT 2024. Contains 372758 sequences. (Running on oeis4.)