Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jun 17 2013 08:40:09
%S 1,1,1,1,2,2,3,3,5,5,7,7,11,11,14,14,20,20,26,27,37,37,46,47,62,63,77,
%T 80,101,103,125,130,160,164,194,203,245,253,296,311,368,381,440,463,
%U 540,562,642,677,780,814,922,973,1107,1157,1302,1375,1552,1626
%N Number of partitions of n into Platonic numbers, cf. A053012.
%e First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, ...
%e a(10) = #{10, 8+1+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+6x1, 10x1} = 7;
%e a(11) = #{10+1, 8+1+1+1, 6+4+1, 6+5x1, 4+4+1+1+1, 4+7x1, 11x1} = 7;
%e a(12) = #{12, 10+1+1, 8+4, 8+1+1+1+1, 6+6, 6+4+1+1, 6+6x1, 4+4+4, 4+4+1+1+1+1, 4+8x1, 12x1} = 11;
%e a(13) = #{12+1, 10+1+1+1, 8+4+1, 8+5x1, 6+6+1, 6+4+1+1+1, 6+7x1, 4+4+4+1, 4+4+5x1, 4+9x1, 13x1} = 11;
%e a(14) = #{12+1+1, 10+4, 10+1+1+1+1, 8+6, 8+4+1+1, 8+6x1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+8x1, 4+4+4+1+1, 4+4+6x1, 4+10x1, 14x1} = 14;
%e a(15) = #{12+1+1+1, 10+4+1, 10+5x1, 8+6+1, 8+4+1+1+1, 8+7x1, 6+6+1+1+1, 6+4+4+1, 6+4+5x1, 6+9x1, 4+4+4+1+1+1, 4+4+7x1, 4+11x1, 15x1} = 14;
%e a(16) = #{12+4, 12+1+1+1+1, 10+6, 10+4+1+1, 10+6x1, 8+8, 8+6+1+1, 8+4+4, 8+4+1+1+1+1, 8+8x1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+6x1, 6+10x1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+8x1, 4+12x1, 16x1} = 20.
%o (Haskell)
%o a226748 = p a053012_list where
%o p _ 0 = 1
%o p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
%Y Cf. A003108, A068980, A226749.
%K nonn
%O 0,5
%A _Reinhard Zumkeller_, Jun 17 2013