

A226749


Number of partitions of n into distinct Platonic numbers, cf. A053012.


3



1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 11, 11, 11, 12, 13, 13, 12, 12, 13, 15, 15, 16, 17, 17, 16, 18, 18, 19, 19, 21, 21, 23, 24, 25, 24, 24, 24, 26, 26, 29, 32
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,11


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000


EXAMPLE

First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, 27, ...
a(10) = #{10, 6+4} = 2;
a(11) = #{10+1, 6+4+1} = 2;
a(12) = #{12, 8+4} = 2;
a(13) = #{12+1, 8+4+1} = 2;
a(14) = #{10+4, 8+6} = 2;
a(15) = #{10+4+1, 8+6+1} = 2;
a(16) = #{12+4, 10+6} = 2;
a(17) = #{12+4+1, 10+6+1} = 2;
a(18) = #{12+6, 10+8, 8+6+4} = 3;
a(19) = #{19, 12+6+1, 10+8+1, 8+6+4+1} = 4;
a(20) = #{20, 19+1, 12+8, 10+6+4} = 4.


PROG

(Haskell)
a226749 = p a053012_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m  k) + p ks m


CROSSREFS

Cf. A226748.
Sequence in context: A061798 A318585 A029241 * A277090 A103376 A189819
Adjacent sequences: A226746 A226747 A226748 * A226750 A226751 A226752


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Jun 17 2013


STATUS

approved



