OFFSET
0,10
COMMENTS
Number of partitions of n into parts congruent to 1 mod 8.
More generally, the ordinary generating function for the number of partitions of n into parts congruent to 1 mod m (for m>0) is Product_{k>=0} 1/(1 - x^(m*k+1)).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015.
FORMULA
G.f.: Product_{k>=0} 1/(1 - x^(8*k+1)).
a(n) ~ exp((Pi*sqrt(n))/(2*sqrt(3)))*Gamma(1/8)/(4*3^(1/16)*(2*Pi)^(7/8)*n^(9/16)).
a(n) = (1/n)*Sum_{k=1..n} A284100(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
EXAMPLE
a(10) = 2, because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
CoefficientList[Series[QPochhammer[x, x^8]^(-1), {x, 0, 90}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 29 2016
STATUS
approved