This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277091 a(n) = ((1 + sqrt(15))^n - (1 - sqrt(15))^n)/sqrt(15). 1
 0, 2, 4, 36, 128, 760, 3312, 17264, 80896, 403488, 1939520, 9527872, 46209024, 225808256, 1098542848, 5358401280, 26096402432, 127210422784, 619770479616, 3020486878208, 14717760471040, 71722337236992, 349493321068544, 1703099363454976, 8299105221869568, 40441601532108800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of zeros in substitution system {0 -> 1111111, 1 -> 1001} at step n from initial string "1" (see example). LINKS Eric Weisstein's World of Mathematics, Substitution System Index entries for linear recurrences with constant coefficients, signature (2,14). FORMULA O.g.f.: 2*x/(1 - 2*x - 14*x^2). E.g.f.: 2*sinh(sqrt(15)*x)*exp(x)/sqrt(15). a(n) = 2*a(n-1) + 14*a(n-2). Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(15) = 1 + A010472. EXAMPLE Evolution from initial string "1": 1 -> 1001 -> 1001111111111111111001 -> ... Therefore, number of zeros at step n: a(0) = 0; a(1) = 2; a(2) = 4, etc. MATHEMATICA LinearRecurrence[{2, 14}, {0, 2}, 26] PROG (PARI) concat(0, Vec(2*x/(1-2*x-14*x^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016 CROSSREFS Cf. A010472, A103435, A274520, A274526. Sequence in context: A057996 A009090 A009295 * A199495 A182965 A189002 Adjacent sequences:  A277088 A277089 A277090 * A277092 A277093 A277094 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Sep 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:27 EDT 2018. Contains 316405 sequences. (Running on oeis4.)