login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274520
a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).
3
0, 2, 4, 20, 64, 248, 880, 3248, 11776, 43040, 156736, 571712, 2083840, 7597952, 27698944, 100985600, 368164864, 1342243328, 4893475840, 17840411648, 65041678336, 237125826560, 864501723136, 3151758405632, 11490527150080, 41891604733952, 152726372368384
OFFSET
0,2
COMMENTS
Number of zeros in substitution system {0 -> 111, 1 -> 1001} at step n from initial string "1" (see example).
FORMULA
O.g.f.: 2*x/(1 - 2*x - 6*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(7)*x)/sqrt(7).
Dirichlet g.f.: (PolyLog(s,1+sqrt(7)) - PolyLog(s,1-sqrt(7)))/sqrt(7), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 6*a(n-2).
a(n) = 2*A083099(n).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(7) = 1 + A010465.
EXAMPLE
Evolution from initial string "1": 1 -> 1001 -> 10011111111001 -> 1001111111100110011001100110011001100110011111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4;
a(3) = 20, etc.
MATHEMATICA
LinearRecurrence[{2, 6}, {0, 2}, 27]
PROG
(PARI) a(n)=([0, 1; 6, 2]^n*[0; 2])[1, 1] \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
Sequence in context: A137697 A192380 A009336 * A337616 A238229 A192377
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Jun 26 2016
STATUS
approved