login
A192380
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
4
0, 2, 4, 20, 60, 230, 776, 2792, 9720, 34410, 120780, 425788, 1497716, 5274190, 18562320, 65348560, 230024944, 809742418, 2850375060, 10033806180, 35320352940, 124333050422, 437670231064, 1540664252600, 5423363437800, 19091038878650, 67203259647836
OFFSET
1,2
COMMENTS
The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: 2*x^2 / (x^4+2*x^3-6*x^2-2*x+1). [Colin Barker, Dec 09 2012]
EXAMPLE
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=2+x+3x^2 -> 5+4x
p(3,x)=8x+4x^2+4x^3 -> 8+20x
p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x.
From these, read
A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...)
MATHEMATICA
(See A192379.)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Jun 29 2011
STATUS
approved