login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192382
Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.
6
0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, 1398784, 5591040, 22372352, 89473024, 357924864, 1431633920, 5726666752, 22906404864, 91626143744, 366503526400, 1466016202752, 5864060616704, 23456250855424, 93824986644480
OFFSET
1,2
COMMENTS
The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.
FORMULA
Conjectures from Colin Barker, May 12 2014: (Start)
a(n) = 2^(n-2)*(2*(-1)^n + 2^n)/3 = 2*A003683(n-1).
a(n) = 2*a(n-1) + 8*a(n-2).
G.f.: 2*x^2 / ((1+2*x)*(1-4*x)). (End).
a(n) = 4^n*(1 - (-1/2)^n)/3. - Peter Luschny, Oct 02 2019
E.g.f: (1/3)*(2 + exp(2*x))*(sinh(x))^2. - G. C. Greubel, Feb 19 2023
EXAMPLE
The first five polynomials p(n,x) and their reductions are as follows:
p(0, x) = 1 -> 1.
p(1, x) = 2*x -> 2*x.
p(2, x) = 2 + x + 3*x^2 -> 8 + 4*x.
p(3, x) = 8*x + 4*x^2 + 4*x^3 -> 16 + 24*x.
p(4, x) = 4 + 4*x + 21*x^2 + 10*x^3 + 5*x^4 -> 96 + 80*x.
From these, read A083086 = (1, 0, 9, 16, 96, ...) and A192382 =(0, 2, 4, 24, 80, ...).
MAPLE
seq(4^n*(1-(-1/2)^n)/3, n=0..24); # Peter Luschny, Oct 02 2019
MATHEMATICA
q[x_]:= x+2; d= Sqrt[x+2];
p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2 d); (* suggested by A162517 *)
Table[Expand[p[n, x]], {n, 6}]
reductionRules= {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x*q[x]^((y- 1)/2)};
t = Table[FixedPoint[Expand[#1/. reductionRules] &, p[n, x]], {n, 30}];
Table[Coefficient[Part[t, n], x, 0], {n, 30}] (* abs value of A083086 *)
Table[Coefficient[Part[t, n], x, 1], {n, 30}] (* 2*A003683 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 30}] (* A003683 *)
LinearRecurrence[{2, 8}, {0, 2}, 40] (* G. C. Greubel, Feb 19 2023 *)
PROG
(Magma) [(4^(n-1) - (-2)^(n-1))/3: n in [1..40]]; // G. C. Greubel, Feb 19 2023
(SageMath) [(4^(n-1) - (-2)^(n-1))/3 for n in range(1, 41)] # G. C. Greubel, Feb 19 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 30 2011
STATUS
approved