login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162517
Triangle of coefficients of polynomials defined by Binet form: P(n,x) = ((x + d)^n - (x - d)^n)/(2*d), where d = sqrt(x+4).
12
0, 1, 2, 0, 3, 1, 4, 4, 4, 16, 0, 5, 10, 41, 8, 16, 6, 20, 86, 48, 96, 0, 7, 35, 161, 169, 348, 48, 64, 8, 56, 280, 456, 992, 384, 512, 0, 9, 84, 462, 1044, 2449, 1744, 2400, 256, 256, 10, 120, 732, 2136, 5482, 5920, 8640, 2560, 2560, 0, 11, 165, 1122, 4026, 11407, 16721, 26420, 14240, 14720, 1280, 1024
OFFSET
1,3
FORMULA
Q(n,x) = (P(n+1, x) - x*P(n,x))/(x+4), where P(n, x) is the n-th polynomial of A162516.
Q(n, x) also has the recurrence Q(n, x) = 2*x*Q(n-1, x) - (x^2 - x - 4)*Q(n-2, x).
From G. C. Greubel, Jul 09 2023: (Start)
T(n, k) = [x^(n-k)](((x+sqrt(x+4))^n -(x-sqrt(x+4))^n)/(2*sqrt(x+4))).
Sum_{k=1..n-1} T(n, k) = A063727(n-2), n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A002605(n-1). (End)
EXAMPLE
First six rows:
0
1
2...0
3...1...4
4...4...16...0
5...10..41...8...16
MATHEMATICA
Q[n_, x_]:= Q[n, x]= ((x+Sqrt[x+4])^n -(x-Sqrt[x+4])^n)/(2*Sqrt[x+4]);
T[n_, k_]:= Coefficient[Series[P[n, x], {x, 0, n-k+1}], x, n-k];
Join[{0}, Table[T[n, k], {n, 12}, {k, n}]//Flatten] (* G. C. Greubel, Jul 09 2023 *)
PROG
(Magma)
m:=12;
Q:= func< n, x | ((x+Sqrt(x+4))^n - (x-Sqrt(x+4))^n)/(2*Sqrt(x+4)) >;
R<x>:=PowerSeriesRing(Rationals(), m+1);
T:= func< n, k | Coefficient(R!( Q(n, x) ), n-k) >;
[0] cat [T(n, k): k in [1..n], n in [1..m]]; // G. C. Greubel, Jul 09 2023
(SageMath)
def Q(n, x): return ((x+sqrt(x+4))^n - (x-sqrt(x+4))^n)/(2*sqrt(x+4))
def T(n, k):
P.<x> = PowerSeriesRing(QQ)
return P( Q(n, x) ).list()[n-k]
[0]+flatten([[T(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Jul 09 2023
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Jul 05 2009
STATUS
approved