OFFSET
1,3
LINKS
G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
FORMULA
Q(n,x) = (P(n+1, x) - x*P(n,x))/(x+4), where P(n, x) is the n-th polynomial of A162516.
Q(n, x) also has the recurrence Q(n, x) = 2*x*Q(n-1, x) - (x^2 - x - 4)*Q(n-2, x).
From G. C. Greubel, Jul 09 2023: (Start)
T(n, k) = [x^(n-k)](((x+sqrt(x+4))^n -(x-sqrt(x+4))^n)/(2*sqrt(x+4))).
Sum_{k=1..n-1} T(n, k) = A063727(n-2), n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A002605(n-1). (End)
EXAMPLE
First six rows:
0
1
2...0
3...1...4
4...4...16...0
5...10..41...8...16
MATHEMATICA
Q[n_, x_]:= Q[n, x]= ((x+Sqrt[x+4])^n -(x-Sqrt[x+4])^n)/(2*Sqrt[x+4]);
T[n_, k_]:= Coefficient[Series[P[n, x], {x, 0, n-k+1}], x, n-k];
Join[{0}, Table[T[n, k], {n, 12}, {k, n}]//Flatten] (* G. C. Greubel, Jul 09 2023 *)
PROG
(Magma)
m:=12;
Q:= func< n, x | ((x+Sqrt(x+4))^n - (x-Sqrt(x+4))^n)/(2*Sqrt(x+4)) >;
R<x>:=PowerSeriesRing(Rationals(), m+1);
T:= func< n, k | Coefficient(R!( Q(n, x) ), n-k) >;
[0] cat [T(n, k): k in [1..n], n in [1..m]]; // G. C. Greubel, Jul 09 2023
(SageMath)
def Q(n, x): return ((x+sqrt(x+4))^n - (x-sqrt(x+4))^n)/(2*sqrt(x+4))
def T(n, k):
P.<x> = PowerSeriesRing(QQ)
return P( Q(n, x) ).list()[n-k]
[0]+flatten([[T(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Jul 09 2023
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Jul 05 2009
STATUS
approved