login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162514
Triangle of coefficients of polynomials defined by the Binet form P(n,x) = U^n + L^n, where U = (x + d)/2, L = (x - d)/2, d = (4 + x^2)^(1/2). Decreasing powers of x.
8
2, 1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 2, 1, 0, 5, 0, 5, 0, 1, 0, 6, 0, 9, 0, 2, 1, 0, 7, 0, 14, 0, 7, 0, 1, 0, 8, 0, 20, 0, 16, 0, 2, 1, 0, 9, 0, 27, 0, 30, 0, 9, 0, 1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2, 1, 0, 11, 0, 44, 0, 77, 0, 55, 0, 11, 0, 1, 0, 12, 0, 54, 0, 112, 0, 105, 0, 36, 0, 2, 1, 0, 13, 0
OFFSET
0,1
COMMENTS
For a signed version of this triangle corresponding to the row reversed version of the triangle A127672 see A244422. - Wolfdieter Lang, Aug 07 2014
The row reversed triangle is A114525. - Paolo Bonzini, Jun 23 2016
FORMULA
P(n,x) = x*P(n-1,x) + P(n-2,x) for n >= 2, P(0,x) = 2, P(1,x) = x.
From Wolfdieter Lang, Aug 07 2014: (Start)
T(n,m) = [x^(n-m)] P(n,x), m = 0, 1, ..., n and n >= 0.
G.f. of polynomials P(n,x): (2 - x*z)/(1 - x*z - z^2).
G.f. of row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m: (2 - z)/(1 - z - (x*z)^2) (rows for P(n,x) reversed).
(End)
For n > 0, T(n,2*m+1) = 0, T(n,2*m) = A034807(n,m). - Paolo Bonzini, Jun 23 2016
EXAMPLE
Triangle begins
2; == 2
1, 0; == x + 0
1, 0, 2; == x^2 + 2
1, 0, 3, 0; == x^3 + 3*x + 0
1, 0, 4, 0, 2;
1, 0, 5, 0, 5, 0;
1, 0, 6, 0, 9, 0, 2;
1, 0, 7, 0, 14, 0, 7, 0;
1, 0, 8, 0, 20, 0, 16, 0, 2;
1, 0, 9, 0, 27, 0, 30, 0, 9, 0;
1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2;
...
From Wolfdieter Lang, Aug 07 2014: (Start)
The row polynomials R(n, x) are:
R(0, x) = 2, R(1, x) = 1 = x*P(1,1/x), R(2, x) = 1 + 2*x^2 = x^2*P(2,1/x), R(3, x) = 1 + 3*x^2 = x^3*P(3,1/x), ...
(End)
MATHEMATICA
Table[Reverse[CoefficientList[LucasL[n, x], x]], {n, 0, 12}]//Flatten (* G. C. Greubel, Nov 05 2018 *)
PROG
(PARI)
P(n)=
{
local(U, L, d, r, x);
if ( n<0, return(0) );
x = 'x+O('x^(n+1));
d=(4 + x^2)^(1/2);
U=(x+d)/2; L=(x-d)/2;
r = U^n+L^n;
r = truncate(r);
return( r );
}
for (n=0, 10, print(Vec(P(n))) ); /* show triangle */
/* Joerg Arndt, Jul 24 2011 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 05 2009
EXTENSIONS
Name clarified by Wolfdieter Lang, Aug 07 2014
STATUS
approved