login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376362
The number of unitary divisors that are squares of primes applied to the powerful numbers.
5
0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 1, 2, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 3, 1, 1, 1, 0, 0, 2, 1, 1, 2, 2, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 2, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 0
OFFSET
1,9
LINKS
Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, On the number of prime factors with a given multiplicity over h-free and h-full numbers, arXiv:2409.11275 [math.NT], 2024. See Theorem 1.3.
FORMULA
a(n) = A369427(A001694(n)).
Sum_{A001694(k) <= x} a(k) = c * sqrt(x) * (log(log(x)) + B - log(2) - L(2, 4)) + O(sqrt(x)/log(x)), where c = zeta(3/2)/zeta(3) (A090699), B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), and L(2, 4) = 0.57937575954505652569... (Das et al., 2024).
MATHEMATICA
f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 1 &], Count[e, 2], Nothing]]; Array[f, 3500]
PROG
(PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] == 1, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", "))); }
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 21 2024
STATUS
approved