login
A376366
The number of non-unitary prime divisors of the cubefree numbers.
4
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1
OFFSET
1,31
LINKS
Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, On the number of prime factors with a given multiplicity over h-free and h-full numbers, arXiv:2409.11275 [math.NT], 2024. Theorem 1.2.
FORMULA
a(n) = A056170(A004709(n)).
a(n) = A369427(A004709(n)).
Sum_{A004709(k) <= x} a(k) = c * x + O(sqrt(x)/log(x)), where c = (1/zeta(3)) * Sum_{p prime} (p*(p-1)/(p^3-1)) = 0.24833233043359932037... (Das et al., 2024).
MATHEMATICA
f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Count[e, 2], Nothing]]; Array[f, 150]
PROG
(PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", "))); }
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 21 2024
STATUS
approved