login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376365
The number of distinct prime factors of the cubefree numbers.
5
0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2
OFFSET
1,6
LINKS
Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, Distribution of omega(n) over h-free and h-full numbers, arXiv:2409.10430 [math.NT], 2024. See Theorem 1.1.
FORMULA
a(n) = A001221(A004709(n)).
Sum_{A004709(k) <= x} a(k) = (6/Pi^2) * x * (log(log(x)) + B - C) + O(x/log(x)), where B is Mertens's constant (A077761) and C = Sum_{p prime} (p-1)/(p*(p^3-1)) = 0.10770743252352371604... (Das et al., 2024).
MATHEMATICA
f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Length[e], Nothing]]; Array[f, 150]
PROG
(PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#e, ", "))); }
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 21 2024
STATUS
approved