login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376359
Positions of numbers in A007961 that end in 2.
4
2, 6, 11, 15, 18, 22, 27, 31, 38, 42, 47, 51, 55, 60, 66, 70, 75, 79, 83, 87, 92, 96, 99, 102, 106, 111, 115, 118, 123, 127, 132, 136, 139, 143, 146, 150, 155, 159, 162, 166, 171, 175, 180, 184, 187, 191, 198, 202, 207, 211, 214, 218, 223, 227, 231, 236, 240
OFFSET
1,1
COMMENTS
Every positive integer is in exactly one of these sequences: A376357, A376358, this sequence, or A376360.
Conjecture: {a(n+1) - a(n) : n >= 1} = {3,4,5,6,7,8,9,10}. (See related conjectures at A376357, A376358, and A376360.)
MATHEMATICA
a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &,
Range[Floor[Sqrt[2 n]]]]]][[All, 2]]]
t4 = Map[a[#, 4] &, Range[200]]; (* A007961 *)
m = Mod[t4, 10];
Table[Flatten[Position[m, r]], {r, 0, 2}]
p0 = Flatten[Position[m, 0]] (* A376357 *)
p1 = Flatten[Position[m, 1]] (* A376359 *)
p2 = Flatten[Position[m, 2]] (* this sequence *)
p3 = Flatten[Position[m, 3]] (* A376360 *)
(* Peter J. C. Moses, Sep 20 2024 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Sep 25 2024
STATUS
approved