

A162513


G.f. is the polynomial (1x^3) * (1x^6) * (1x^9) * (1x^12) * (1x^15) / (1x)^5.


0



1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895, 1049, 1200, 1342, 1469, 1575, 1655, 1705, 1722, 1705, 1655, 1575, 1469, 1342, 1200, 1049, 895, 744, 601, 470, 354, 255, 174, 111, 65, 34, 15, 5, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is a row of the triangle in A162499.
Only finitely many terms are nonzero.


LINKS

Table of n, a(n) for n=0..40.


MAPLE

m:=5: seq(coeff(series(mul((1x^(3*k)), k=1..m)/(1x)^m, x, n+1), x, n), n=0..40); # Muniru A Asiru, Jul 07 2018


MATHEMATICA

CoefficientList[ Series[Times @@ (1  x^(3Range@5))/(1  x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2013 and slightly modified by Robert G. Wilson v, Jul 23 2018)


PROG

(PARI) x='x+O('x^41); Vec((1x^3)*(1x^6)*(1x^9)*(1x^12)*(1x^15)/(1x)^5) \\ G. C. Greubel, Jul 06 2018
(MAGMA) m:=41; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1x^3)*(1x^6)*(1x^9)*(1x^12)*(1x^15)/(1x)^5)); // G. C. Greubel, Jul 06 2018


CROSSREFS

Sequence in context: A147150 A279231 A238340 * A006003 A026101 A111385
Adjacent sequences: A162510 A162511 A162512 * A162514 A162515 A162516


KEYWORD

nonn,fini,full


AUTHOR

N. J. A. Sloane, Dec 02 2009


STATUS

approved



