login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317999
G.f. A(x) satisfies: Sum_{n>=1} (-1)^n * (A(x) - (-1)^n*A(-x))^n = 0.
1
1, 2, 4, 24, 112, 608, 3392, 19456, 114688, 681984, 4120576, 25182208, 155394048, 967598080, 6070190080, 38322601984, 243289358336, 1552850223104, 9960145289216, 64109305921536, 413780210089984, 2683663674245120, 17513860521000960, 114061957027332096, 735229028562108416, 4844244732571811840, 33982887942858735616, 218245067017509928960, 906594523232033832960
OFFSET
1,2
FORMULA
G.f. A(x) satisfies:
(1) A(-A(-x)) = x.
(2a) 0 = Sum_{n>=1} (-1)^n * (A(x) - (-1)^n*A(-x))^n.
(2b) 1 = 1/(1 - (A(x) - A(-x))^2) - (A(x) + A(-x))/(1 - (A(x) + A(-x))^2).
(3) 0 = x*(1-x)*(1+x)^2 - (1-x)^2*A(A(x)) + (1 + x + 2*x^2)*A(A(x))^2 + A(A(x))^3 - A(A(x))^4.
(4) A(A(x)) = G(x) such that Sum_{n>=1} (x + (-1)^n*G(x))^n = 0, where G(x) is the g.f. of A317998.
EXAMPLE
G.f. A(x) = x + 2*x^2 + 4*x^3 + 24*x^4 + 112*x^5 + 608*x^6 + 3392*x^7 + 19456*x^8 + 114688*x^9 + 681984*x^10 + 4120576*x^11 + 25182208*x^12 + ...
such that
0 = (A(x) + A(-x)) - (A(x) - A(-x))^2 + (A(x) + A(-x))^3 - (A(x) - A(-x))^4 + (A(x) + A(-x))^5 - (A(x) - A(-x))^6 + (A(x) + A(-x))^7 - (A(x) - A(-x))^8 + ...
Also,
0 = (x - A(A(x))) + (x + A(A(x)))^2 + (x - A(A(x)))^3 + (x + A(A(x)))^4 + (x - A(A(x)))^5 + (x + A(A(x)))^6 + (x - A(A(x)))^7 + (x + A(A(x)))^8 + ...
RELATED SERIES.
A(A(x)) = x + 4*x^2 + 16*x^3 + 96*x^4 + 640*x^5 + 4480*x^6 + 32768*x^7 + 247552*x^8 + 1915904*x^9 + 15113216*x^10 + ... + A317998(n)*x^n + ...
CROSSREFS
Cf. A317998.
Sequence in context: A192382 A232205 A170931 * A371892 A164313 A087981
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2018
STATUS
approved