The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318000 E.g.f.: log( 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))) ). 4
 1, 4, 24, 256, 3840, 73024, 1688064, 45991936, 1443102720, 51249316864, 2032187080704, 89000317321216, 4266655914393600, 222232483747938304, 12496860570760249344, 754582425618372100096, 48694058763984285204480, 3344368871374116303929344, 243577066332044464943529984, 18751361596512920229250072576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA E.g.f. A(x) satisfies: (1) A(-A(-x)) = x. (2) 1 = Sum_{n>=0} ( x + (-1)^n*A(x) )^n/n!. (3a) 1 = cosh(A(x) + x) - sinh(A(x) - x). (3b) 1 = cosh(x)*exp(-A(x)) + sinh(x)*exp(A(x)). (3c) 1 = exp(x)*cosh(A(x)) - exp(-x)*sinh(A(x)). (4a) A(x) = log( 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))) ). (4b) A(x) = log( (1 - sqrt(1 - 2*sinh(2*x))) / (2*sinh(x)) ). (5) A(x) = F(F(x)) where F(x) is the e.g.f. of A318001, which satisfies: 1 = cosh(F(x) - F(-x)) - sinh(F(x) + F(-x)). a(n) ~ 5^(1/4) * 2^(n - 1/2) * n^(n-1) / (exp(n) * log((1 + sqrt(5))/2)^(n - 1/2)). - Vaclav Kotesovec, Aug 21 2018 EXAMPLE E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 256*x^4/4! + 3840*x^5/5! + 73024*x^6/6! + 1688064*x^7/7! + 45991936*x^8/8! + 1443102720*x^9/9! + 51249316864*x^10/10! + ... such that cosh(x + A(x)) + sinh(x - A(x)) = 1. RELATED SERIES. (1) exp(A(x)) = 1 + x + 5*x^2/2! + 37*x^3/3! + 425*x^4/4! + 6601*x^5/5! + 129005*x^6/6! + 3044077*x^7/7! + 84239825*x^8/8! + ... + A318002(n)*x^n/n! + ... which equals 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))). (2) Let F(F(x)) = A(x) then F(x) = x + 2*x^2/2! + 6*x^3/3! + 56*x^4/4! + 600*x^5/5! + 8432*x^6/6! + 144816*x^7/7! + 2892416*x^8/8! + 66721920*x^9/9! + ... + A318001(n)*x^n/n! + ... where cosh(F(x) - F(-x)) - sinh(F(x) + F(-x)) = 1. MAPLE seq(n!*coeff(series(log(2*cosh(x)/(1+sqrt(1-2*sinh(2*x)))), x=0, 21), x, n), n=0..20); # Paolo P. Lava, Jan 09 2019 PROG (PARI) {a(n) = my(A = log( 2*cosh(x +x^2*O(x^n)) / (1 + sqrt(1 - 2*sinh(2*x +x^2*O(x^n)))) )); n!*polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A318001 (A(A(x))), A318002 (exp(A(x)), A318005 (variant). Sequence in context: A330469 A227467 A176785 * A095340 A141014 A340023 Adjacent sequences:  A317997 A317998 A317999 * A318001 A318002 A318003 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 15:10 EDT 2022. Contains 356066 sequences. (Running on oeis4.)