login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317997 G.f. A(x) satisfies: Sum_{n>=0} ( x^n + (-1)^n*A(x) )^n = 1. 9
1, 1, 3, 8, 22, 62, 184, 566, 1779, 5678, 18367, 60091, 198454, 660659, 2214700, 7469730, 25330135, 86308528, 295349232, 1014609122, 3497707471, 12096300263, 41955256710, 145908382056, 508676792788, 1777418947825, 6223737747078, 21835417474588, 76747151840311, 270209860057674, 952864014673991, 3365181832760454, 11901315653535352 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..520

FORMULA

G.f. A(x) satisfies:

(1) 1 = Sum_{n>=0} ( x^n + (-1)^n*A(x) )^n.

(2) 1 = Sum_{n>=0} x^(n^2) / (1 + (-x)^n*A(x))^(n+1).

a(n) ~ c * d^n / n^(3/2), where d = 3.699932925974338637547631722109256130661... and c = 0.41429291356124695745726003609883876... - Vaclav Kotesovec, Sep 06 2018

A(1/d) = 0.8093560777550741... where d is given above. - Paul D. Hanna, Oct 08 2019

EXAMPLE

G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 22*x^5 + 62*x^6 + 184*x^7 + 566*x^8 + 1779*x^9 + 5678*x^10 + 18367*x^11 + 60091*x^12 + ...

such that

1 = 1 + (x - A(x)) + (x^2 + A(x))^2 + (x^3 - A(x))^3 + (x^4 + A(x))^4 + (x^5 - A(x))^5 + (x^6 + A(x))^6 + (x^7 - A(x))^7 + ...

Also

1 = 1/(1 + A(x)) + x/(1 - x*A(x))^2 + x^4/(1 + x^2*A(x))^3 + x^9/(1 - x^3*A(x))^4 + x^16/(1 + x^4*A(x))^5 + x^25/(1 - x^5*A(x))^6 + x^36/(1 + x^6*A(x))^7 + ...

PROG

(PARI) /* Using: 1 = Sum_{n>=0} ( x^n + (-1)^n*A(x) )^n */

{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=1, #A, (x^m + (-1)^m*x*Ser(A))^m ), #A); ); polcoeff(A, n)}

for(n=1, 35, print1(a(n), ", "))

(PARI) /* Faster: 1 = Sum_{n>=0} x^(n^2) / (1 + (-x)^n*A(x))^(n+1) */

{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, sqrtint(#A+1), x^(m^2)/(1 + (-x)^m*x*Ser(A))^(m+1) ), #A); ); polcoeff(A, n)}

for(n=1, 35, print1(a(n), ", "))

CROSSREFS

Cf. A247332.

Sequence in context: A188464 A298260 A336990 * A164934 A047926 A192681

Adjacent sequences:  A317994 A317995 A317996 * A317998 A317999 A318000

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 31 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 11:24 EDT 2022. Contains 357070 sequences. (Running on oeis4.)